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Abstract This paper is concerned with singularly perturbed initial value problems
for systems of ordinary differential equations. Here our emphasis will be on nonlinear
phenomena and properties, particularly those with physical relevance. Since very few
nonlinear systems can be solved explicitly, one must typically rely on a numerical
scheme to accurately approximate the solution. However, numerical schemes do not
always give accurate results, and we discuss the class of stiff differential equations,
which present a more serious challenge to numerical analysts. In this paper, we derive
in closed from, analytic solution of stiff nonlinear initial value problems, through iter-
ation. The obtained sequence of iterates is based on the use of Lagrange multipliers.
Moreover, the illustrative examples shows the efficiency of the method.

Keywords Variation iteration · Nonlinear initial value problem · Lagrange multiplier

1 Introduction

We consider the following one dimensional nonlinear singularly perturbed initial value
problem:

εy′ + a(t)y(t) = f (t, y(t)) in �,

y(t0) = y0.
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Here � ≡ (0, 1) is the bounded domain with α the initial given data and f (t) be
the given nonlinear source function.

Mathematical models that involve initial value problems are quite important in all
of science, engineering, and other fields where mathematical modeling is required.
Very often the dimensionless parameter that measures the relative strength of the
highest order derivative term is quite small. This implies that thin boundary and inte-
rior layers are present in the solution and singular perturbation problems arise. This
kind of problem appears, for example, in the dynamics of chemical reactions [1–5],
fluid or gas dynamics [6,7], heat transfer [8], theory of plates and shells [9], magneto-
hydrodynamic flow [10], or neuron variability [11–13]. An extensive selection of such
type of problems of the physics or engineering may be found in [14]: pollutant dispersal
in a river estuary, vorticity transport in the incompressible Navier-Stokes equations,
atmospheric pollution, groundwater transport, turbulence transport, etc.

For small values of perturbation parameter, the use of standard higher order meth-
ods like the Galerkin finite elements or central differencing on uniform meshes leads
to nonphysical oscillations in the computed solution. This is due to a loss in stabil-
ity—unless the mesh diameter is extremely small, which is computationally expensive.
Many authors studied such type of problems and proposed adaptive numeric or asymp-
totic techniques, such as non-conforming finite elements [15], monotone difference
methods [16], local projection stabilization [17], streamline diffusion methods [18],
fitted schemes [19,20], finite volume approximations [21] or weighted schemes [22].

The objective of this paper is to derive in closed form, the solutions of nonlinear
singularly perturbed initial value problems, using variation iteration method [23]. The
method was proposed originally by He [23] and is based on a Lagrange multiplier
technique developed by Inokuti et al. [24] whereby the Lagrange multiplier is not a
constant but a function. In their paper, Inokuti et al. [24] construct adjoint operators
and sate that “λ (the Lagrange multiplier) may be regarded as a Greens function”.
In [25], it was shown that this claim is indeed correct and also show that Inokuti et
al.s variational technique [24] and, therefore, Hes variational iteration method [23,26]
can be derived by means of adjoint operators, Greens function, integration by parts
and the method of weighted residuals. An elementary introduction to the variational
iteration method and some new developments, as well as to new interpretations, can
be found in [27–29]. There, the main concepts underlying the variational iteration
method, such as the role of general Lagrange multipliers, the restricted variation and
correction functionals are explained heuristically.

2 Variation iteration method

In this section, we present briefly the basic idea underlying the variational iteration
method. Consider the following nonlinear equation:

Ly(t) ≡ L(y(t)) + N (y(t)) = f (t), (2.1)

where L is a linear operator, N a nonlinear operator and f (t) a known analytic inhomo-
geneous term. According to the variation iteration method, we can construct correction
functional as follows:
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yn+1(t) = yn(t) +
t∫

0

λ(s){Lyn(s) + N ỹn(s) − f (s)}ds, n ≥ 0 (2.2)

where λ is a general Lagrange’s multiplier, which can be identified optimally via
variational theory and using integration by parts. Here, yn (n ≥ 0) be the approx-
imate solution at nth iteration and ỹn denotes the restricted variation which means
δ ỹn = 0. After determining the Lagrange multiplier λ (in subsequent discussion,
it is to be noted that the Lagrange multiplier can be a constant or a function) and
selecting an appropriate initial function y0, (any function that satisfies the boundary
condition) the successive approximations yn of the solution y can be readily obtained
using (2.2). Consequently, the exact solution of the problem may be obtained using
y = limn→∞ yn . Let us elucidate this idea further with the help of a linear example.

Example 2.1 Single-species models are of relevance to laboratory studies in particu-
lar but, in the general world, can reflect a telescoping of effects which influence the
population dynamics. Let y(t) be the population of the species at time t , then a linear
model of population growth together with the prescribed boundary conditions reads

ε
dy(t)

dt
= (2t − 1)y t ∈ (0, 1); y(0) = A. (2.3)

where ε is very small. Exact solution of the problem reads,

y(t) = A exp
t (t − 1)

ε
= 0.5 exp

t (t − 1)

ε
for A = 0.5. (2.4)

The correction function corresponding to (2.3) can be written as

yn+1(t) = yn(t) +
t∫

0

λ(s)

[
dyn(s)

ds
− 2s − 1

ε
yn(s)

]
ds

= yn(t) + λ(s)yn(s)|s=t −
t∫

0

(
dλ(s)

ds
+ λ(s)

2s − 1

ε

)
yn(s)ds. (2.5)

In order to determine Lagrange’s multiplier λ optimally, we make use of variational
theory. Taking variation with respect to the independent variable yn (notice that
δyn(0)= 0) and making the correctional functional (2.5) stationary i.e. δyn+1 = 0:

δyn+1(t) = δyn(t) + λ(s)δyn(s)|s=t −
t∫

0

(
dλ(s)

ds
+ λ(s)

2s − 1

ε

)
δyn(s)ds.

(2.6)
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Hence, the Euler-Lagrange equation reads

dλ(s)

ds
+ λ(s)

2s − 1

ε
= 0 (2.7)

and the stationary condition so obtained is

1 + λ(s)|s=t = 0. (2.8)

The Lagrange multiplier can readily be defined as a solution of (2.7–2.8) given by

λ(s) = − exp
(t − s)(t + s − 1)

ε
.

As a result, iteration formula becomes

yn+1(t) = yn(t) −
t∫

0

exp
(t − s)(t + s − 1)

ε

[
dyn(s)

ds
− 2s − 1

ε
yn(s)

]
ds. (2.9)

Starting with y0(t) = 0.5 and using the iteration formula (2.9), we find

y1(t) = 0.5

⎛
⎝1 −

t∫

0

exp
(t − s)(t + s − 1)

ε

[
1 − 2s

ε

]
ds

⎞
⎠

= 0.5

(
1 −

[
exp

t2

ε
− s2

ε
− t

ε
+ s

ε

]t

0

)

= 0.5 exp
t (t − 1)

ε
. (2.10)

Clearly, y1(t) coincides with the exact solution (2.4).

3 Nonlinear initial value problems

3.1 Statement of the problem and auxiliary results

Consider the following nonlinear initial value problem:

εy′ + a(t)y(t) = f (t, y(t)) in �,

y(0) = y0,

}
(3.1)

where ε is a small parameter and y0 be the given initial data. The functions a(t) is
assumed to be sufficiently smooth and the nonlinear source term f (t, y(t)) is assumed
to be sufficiently differentiable function so that
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α ≤ ∂ f

∂y
≤ α∗ < ∞.

By virtue of Mean-Value Theorem, Eq. (3.1) can be written as

εy′ + (a(t) + b(t))u = f (t, 0), (3.2)

where b(t) = − ∂ f
∂y (t, ỹ), ỹ = γ y, 0 < γ < 1. Now, multiply both sides of Eq. (3.2)

by 1
ε

exp
(

1
ε

∫ t
0 (a(s) + b(s))ds

)
, then we have

⎛
⎝y exp

⎛
⎝1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠

⎞
⎠

′

= f (t, 0)

ε
exp

⎛
⎝1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠ .

Integration within the limits 0 to t gives

y(t) = y0 exp

⎛
⎝−1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠

+1

ε

t∫

0

f (τ, 0) exp

⎛
⎝−1

ε

t∫

τ

(a(s) + b(s))ds

⎞
⎠ dτ.

This implies

|y(t)| ≤ |y0|
∣∣∣∣∣∣exp

⎛
⎝−1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠

∣∣∣∣∣∣

+1

ε
| f (τ, 0)|

∣∣∣∣∣∣
t∫

0

exp

⎛
⎝−1

ε

t∫

τ

(a(s) + b(s))ds

⎞
⎠ dτ

∣∣∣∣∣∣
≤ |y0| exp

(
−βt

ε

)
+ β−1

(
1 − exp

(
−βt

ε

))
| f (τ, 0)|.

Therefore, ‖y‖∞ ≤ C1. Now, |y′(0)| ≤ 1
ε
(| f (0, α)| + |a(t)||u(t)|). Therefore,

|y′(0)| ≤ C

ε
. (3.3)

Differentiating of Eq. (3.1) yields

εy′′ + (a(t) + b(t))u′ = −φ(x) − a′(t)u(t), (3.4)
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where b(t) = − ∂ f
∂y (t, y) and φ(t) = − ∂ f

∂t (t, y). Again multiplying both sides of the

Eq. (3.4) by 1
ε

exp
(

1
ε

∫ t
0 (a(s) + b(s))ds

)
, we get

⎛
⎝y′(t) exp

⎛
⎝1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠

⎞
⎠

′

= −φ(t) + a(t)u(t)

ε
exp

⎛
⎝1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠ .

Now integrating both sides within the limits 0 to t, we get

y′(t) = y′(0) exp

⎛
⎝−1

ε

t∫

0

(a(s) + b(s))ds

⎞
⎠

−1

ε

t∫

0

(φ(τ) + a′(τ )u(τ )) exp

⎛
⎝−1

ε

t∫

τ

(a(s) + b(s))ds

⎞
⎠ dτ.

This implies

|y′(t)| ≤ C

ε
exp

(
−βt

ε

)
+ (|φ(τ)| + |a′(τ )||u(τ )|)β−1

(
1 − exp

(
−βt

ε

))

≤ C

(
1

ε
exp

(
−βt

ε

)
+ β−1

(
1 − exp

(
−βt

ε

)))
.

Hence, the solution of the problem 3.1 and its derivative are bounded.

3.2 Variation iteration method

The correctional function corresponding to (3.1) can be written as

yn+1(t) = yn(t) +
t∫

0

λ(s)

[
dyn(s)

ds
+ a(s)

ε
yn(s) − 1

ε
f̃ (s, yn(s))

]
ds, (3.5)

where λ(s) ≡ λ(s, t) is the general Lagrange multiplier which is to be determined and
f̃ (s, yn(s)) denotes restricted variation i.e. δ f̃ (s, yn(s)) = 0.

In order to determine Lagrange’s multiplier λ optimally, we make use of varia-
tional theory. Taking variation with respect to the independent variable yn (notice that
δyn(0) = 0) and making the correctional functional (3.5) stationary i.e.δyn+1 = 0:
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δyn+1(t) = δyn(t) + λ(s)δyn(s)|s=t −
t∫

0

(
dλ(s)

ds
− λ(s)

a(s)

ε

)
δyn(s)ds. (3.6)

Therefore, Euler-Lagrange equation becomes

dλ(s)

ds
− λ(s)

a(s)

ε
= 0 (3.7)

and the stationay condition so obtained reads

1 + λ(s)|s=t = 0. (3.8)

The Lagrange multiplier can readily be identified as a solution of (3.7–3.8) given by

λ(s) = − exp

(
−

∫
a(t)

ε
dt +

∫
a(s)

ε
ds

)
.

As a result, iteration formula becomes

yn+1(t) = yn(t) +
t∫

0

− exp

(
−

∫
a(t)

ε
dt +

∫
a(s)

ε
ds

) [
dyn(s)

ds

+a(s)

ε
yn(s) − 1

ε
f (s, yn(s))

]
ds. (3.9)

4 Numerical illustrations

In this section, we will apply the variational iteration method to

Example 4.1 Consider the initial value problem (3.1) with a(t) = 0 and f = y2.
Exact solution of the problem with y(t0) = y0 reads

y(t) = − ε

t − ε
(

1
y0

+ t0
ε

) = εy0

ε − y0(t − t0)
. (4.1)

Let us solve it using variation iteration formula and see if the proposed iterative method
is qualitatively consistent with the way exact solution behaves. To this effort, we have
from (3.9):

yn+1(t) = yn(t) −
t∫

0

[
dyn(s)

ds
− 1

ε
u2

n

]
ds.
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Starting with y(0) = y0,we find

y1(t) = y0 −
t∫

0

y′
0 − 1

ε
y2

0 ds = y0

(
1 + y0

ε
t
)

.

y2(t) = y0 + y2
0

ε
t −

t∫

0

y2
0

ε
− 1

ε

(
y0 + y2

0

ε
s

)2

ds

= y0

(
1 + y0

ε
t + y2

0

ε2 t2

)
+ O

(
t3

ε3

)
.

y3(t) = y0

(
1 + y0

ε
t + y2

0

ε2 t2

)
−

t∫

0

y2
0

ε2 + 2y3
0

ε2 s − y2
0

ε

(
1 + y0

ε
s + y2

0

ε2 s2

)2

ds,

= y0

(
1 + y0

ε
t + y2

0

ε2 t2 + y3
0

ε3 t3

)
+ O

(
t4

ε4

)
n→∞−→ εy0

ε − y0t
.

Clearly, as t approaches the critical value t∗ = t0 + ε/y0 from below, the solution
blows up, meaning u(t) → ∞ as t → t∗. The blow up time t∗ depends upon the
initial data: the larger y0 > 0 is, the sooner the solution goes off to infinity (Fig. 1). If
the initial data is negative, y0 < 0, the solution is well-defined for all t > t0 (Fig. 2),
but has a singularity in the past, at t∗ = t0 + ε/y0. The only solution that exists for
all positive and negative time is the constant solution y(t) = 0, corresponding to
the initial condition y0 = 0. Clearly, the limiting solution coincides with the exact
solution.

0 0.2 0.4 0.6 0.8 1
−15

−10

−5

0

5

10

15

t

y(
t)

Fig. 1 Some typical solutions of Example 4.1 for different values of y0 ≥ 0
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Fig. 2 Some typical solutions of Example 4.1 for different values of y0 ≤ 0

Example 4.2 Consider the initial value problem (3.1) with a(t) = −λ and f = −λy2.
Exact solution of the problem with y(0) = y0 reads

y(t) = − y0 exp (λt/ε)

1 − y0 + y0 exp (λt/ε)
= − y0 exp (t/ε)

1 − y0 + y0 exp (t/ε)
(for λ = 1). (4.2)

When using the so-called logistic equation to model population dynamics, the initial
data is assumed to be positive, y0 > 0. As time t → ∞ the solution 4.2 tends to the
equilibrium value y(t) = 1. For small initial values y0 << 1 the solution initially
grows at an exponential rate λ, corresponding to a population with unlimited resources.
However, as the population increases, the gradual lack of resources tends to slow down
the growth rate, and eventually the population saturates at the equilibrium value. On
the other hand, if y0 > 1, the population is too large to be sustained by the available
resources, and so dies off until it reaches the same saturation value. If y0 = 0, then
the solution remains at equilibrium y(t) ≡ 0. Finally, when y0 < 0, the solution only
exists for a finite amount of time, with

y(t) → −∞ as t → t∗ = 1

λ
log

(
1 − 1

y0

)
.

Of course, this final case does appear in the physical world, since we cannot have a
negative population!, so this may be discared. Let us solve it using variation iteration
formula and see if the proposed iterative method is qualitatively consistent with the
way exact solution behaves. To this effort, we have from (3.9):

yn+1(t) = yn(t) −
t∫

0

exp

(
t − s

ε

) [
dyn(s)

ds
− 1

ε
(yn − y2

n )

]
ds.
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Fig. 3 Some typical solutions of Example 2.1 for different values of ε

0 2 4 6 8 10

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

t

y(
t)

Fig. 4 Some typical solutions of Example 4.2 for different values of y0

Starting with y(0) = y0, we find

y1(t) = y0 −
t∫

0

exp

(
t − s

ε

)[
dy0(s)

ds
− 1

ε
(y0 − y2

0 )

]
ds,= y0 +

(
1

ε
y0 − 1

ε
y2

0

)
t

y2(t) = y1 +
(

1

2ε2 y0 − 1

2ε2 y2
0 + 1

ε2 y2
0 (−1 + y0)

)
t2 + O

(
t3

ε3

)
.

y3(t) = y2 +
( −1

6ε3 y2
0 + 1

6ε3 y0 + 1

2ε3 y2
0 (−1 + y0) − 1

2ε3 y2
0 (1 − 3y0 + 2y2

0 )

)
t3
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+O
(

t4

ε4

)
n→∞−→ − y0 exp (t/ε)

1 − y0 + y0 exp (t/ε)
.

Clearly, the limiting solution coincides with the exact solution (Figs. 3, 4).

5 Conclusion

In this paper, we have demonstrated the applicability of variation iteration method
for solving nonlinear singularly perturbed autonomous initial value problems. It is
observed that the method is easy to implement. Moreover, it provides analytical
approximations to both linear and nonlinear problems without any linearization and
discretization. In case of linear problem (Example 2.1) the exact solution of the prob-
lem is obtained using one iteration only. It can be concluded that the variation iteration
method is promising and readily implemented.
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